Genome-wide analysis of the CCCH zinc finger family identifies tissue specific and stress responsive candidates in chickpea (Cicer arietinum L.)
نویسندگان
چکیده
The CCCH zinc finger is a group of proteins characterised by a typical motif consisting of three cysteine residues and one histidine residue. These proteins have been reported to play important roles in regulation of plant growth, developmental processes and environmental responses. In the present study, genome wide analysis of the CCCH zinc finger gene family was carried out in the available chickpea genome. Various bioinformatics tools were employed to predict 58 CCCH zinc finger genes in chickpea (designated CarC3H1-58), which were analysed for their physio-chemical properties. Phylogenetic analysis classified the proteins into 12 groups in which members of a particular group had similar structural organization. Further, the numbers as well as the types of CCCH motifs present in the CarC3H proteins were compared with those from Arabidopsis and Medicago truncatula. Synteny analysis revealed valuable information regarding the evolution of this gene family. Tandem and segmental duplication events were identified and their Ka/Ks values revealed that the CarC3H gene family in chickpea had undergone purifying selection. Digital, as well as real time qRT-PCR expression analysis was performed which helped in identification of several CarC3H members that expressed preferentially in specific chickpea tissues as well as during abiotic stresses (desiccation, cold, salinity). Moreover, molecular characterization of an important member CarC3H45 was carried out. This study provides comprehensive genomic information about the important CCCH zinc finger gene family in chickpea. The identified tissue specific and abiotic stress specific CCCH genes could be potential candidates for further characterization to delineate their functional roles in development and stress.
منابع مشابه
Genome-Wide Identification and Expression Analysis of the CaNAC Family Members in Chickpea during Development, Dehydration and ABA Treatments
The plant-specific NAC transcription factors (TFs) play important roles in regulation of diverse biological processes, including development, growth, cell division and responses to environmental stimuli. In this study, we identified the members of the NAC TF family of chickpea (Cicer arietinum) and assess their expression profiles during plant development and under dehydration and abscisic acid...
متن کاملGenome-Wide Analysis of the Aquaporin Gene Family in Chickpea (Cicer arietinum L.)
Aquaporins (AQPs) are essential membrane proteins that play critical role in the transport of water and many other solutes across cell membranes. In this study, a comprehensive genome-wide analysis identified 40 AQP genes in chickpea (Cicer arietinum L.). A complete overview of the chickpea AQP (CaAQP) gene family is presented, including their chromosomal locations, gene structure, phylogeny, g...
متن کاملCCCH-Type Zinc Finger Family in Maize: Genome-Wide Identification, Classification and Expression Profiling under Abscisic Acid and Drought Treatments
BACKGROUND CCCH-type zinc finger proteins comprise a large protein family. Increasing evidence suggests that members of this family are RNA-binding proteins with regulatory functions in mRNA processing. Compared with those in animals, functions of CCCH-type zinc finger proteins involved in plant growth and development are poorly understood. METHODOLOGY/PRINCIPAL FINDINGS Here, we performed a ...
متن کاملGenome-Wide Identification and Tissue-Specific Expression Analysis of UDP-Glycosyltransferases Genes Confirm Their Abundance in Cicer arietinum (Chickpea) Genome
UDP-glycosyltransferases (EC 2.4.1.x; UGTs) are enzymes coded by an important gene family of higher plants. They are involved in the modification of secondary metabolites, phytohormones, and xenobiotics by transfer of sugar moieties from an activated nucleotide molecule to a wide range of acceptors. This modification regulates various functions like detoxification of xenobiotics, hormone homeos...
متن کاملGenome Wide Identification of LIM Genes in Cicer arietinum and Response of Ca-2LIMs in Development, Hormone and Pathogenic Stress
The eukaryotic lineage-specific LIM protein (LIN11, ISL1, and MEC3) family play pivotal role in modulation of actin dynamics and transcriptional regulation. The systematic investigation of this family has not been carried in detail and rare in legumes. Current study involves the mining of Cicer arietinum genome for the genes coding for LIM domain proteins and displayed significant homology with...
متن کامل